
34 communications of thE acm | AugusT 2013 | vOL. 56 | nO. 8

V
viewpoints

P
h

o
t

o
g

r
a

P
h

 b
y

 D
I

a
n

a
 a

r
V

a
y

o
,

c
o

u
r

t
e

S
y

 o
f

 n
e

a
r

S
o

f
t

 I
n

c
.

M
a n y C o M M u n i C a t i o n s

r e a D e r s have been in
faculty meetings where
we have reviewed and be-
moaned statistics about

how bad attrition is in our introductory
programming courses for computer
science majors (CS1). Failure rates of
30%–50% are not uncommon world-
wide.1 There are usually as many sug-
gestions for how to improve the course
as there are faculty in the meeting. But
do we know anything that really works?

We do, and we have research evi-
dence to back it up. Pair programming,
peer instruction, and media computa-
tion are three approaches to reforming
CS1 that have shown positive, measur-
able impacts. Each of them is success-
ful separately at improving retention or
helping students learn, and combined,
they have a dramatic effect.

Pair Programming
Pair programming is a practice that
started in industry as an agile meth-
od. The idea is to have two people at
a keyboard, one as the “driver” and
the other as an “observer” or “naviga-
tor.” The two people in the pair swap
roles regularly while working. There
is significant evidence that having two
people at the keyboard improves pro-
ductivity in industry, but does it help
in the classroom?

Pioneering work by Laurie Williams
showed it could. Students using pair
programming in an upper-division CS
course produced higher-quality pro-

grams and learned the material faster.
The idea is that students learn from
the collaboration and the discussion,
so the effort of coordinating work in a
pair leads to better learning.

Charlie McDowell, Linda Werner,
and their collaborators took this one
step further. At the University of Califor-
nia at Santa Cruz (UCSC) they changed
two sections of CS1 to use pair program-
ming and left two sections with the
usual solo work on programming as-
signments.3 The researchers followed

the students for one year after the first
quarter course. They found that more
students passed in the pairing sections
(72%) versus the solo sections (63%),
students were more likely to continue
on into the next course (85% versus
67%), and they were more likely to have
declared a CS major one year later (57%
versus 34%). (Note: Many first-year stu-
dents at UCSC are undeclared or have
only a “proposed” major.)

Looking only at the final exam scores
of the students that worked in pairs and

education
success in introductory
Programming: What Works?
How pair programming, peer instruction, and media computation
have improved computer science education.

 DOI:10.1145/2492007.2492020 Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon

viewpoints

AugusT 2013 | vOL. 56 | nO. 8 | communications of thE acm 35

V
viewpoints

makes it more relevant, and makes the
students more successful.

Peer instruction
Many of us have had the experience
lecturing to a class where we have ex-
plained a key concept with brilliant
clarity. We turn to the class, ask if
there are any questions, and we hear…
crickets. One-half of the class is look-
ing at phones or laptops, one-fourth
looks utterly confused and scared, and
another one-fourth looks bored. No
one asks anything, you think “they’ve
got it” and move on. After the exam
you discover: they didn’t get it.

Peer Instruction, originally devel-
oped by Eric Mazur for teaching phys-
ics, seeks to remedy this problem by
engaging students in the learning
process. Peer Instruction modifies the
standard “lecture” to revolve around
3–5 questions per lecture. For each of
these questions, students follow the PI
process: individually think about the
problem and answer (often using click-
ers); discuss the question in groups;
then answer again (using a clicker).
Lastly, the instructor leads a class-
wide discussion on the question and
dynamically adjusts their explanation
based on student performance.

Peer Instruction in physics has con-
sistently shown twofold improvements
in student performance on concept
inventory exams versus standard lec-
ture in large multi-institutional stud-

those that worked alone, there was no
significant difference. It is important
to note that significantly more students
in the pairing section persisted to the
end and took the final. This resulted in
a higher percentage of students pass-
ing the course in the pairing sections.
It also refutes the claim that weak stu-
dents fail to learn the material because
their partner does all of the work.

media computation
Georgia Tech requires all students to
take a course in computer science, in-
cluding students in Liberal Arts, Archi-
tecture, and Business majors. During
the first four years of this requirement,
the overall pass rate was 78%, which is
quite reasonable. The pass rate for stu-
dents in Liberal Arts, Architecture, and
Business, however, was less than 50%
on average.

Guzdial and his colleagues created
a new course just for students in Liber-
al Arts, Architecture, and Business pro-
grams. For these students, computing
is more about communication than cal-
culation. Students in these programs
most often use the computer in order
to communicate with digital media.

Media Computation was an ap-
proach to CS1 that explained how digi-
tal media are manipulated. Students
learned about loops by changing all
the pixels in a picture to compute a
negative image, or all the samples in a
sound in order to decrease the volume.

Students learned about conditionals by
removing red eye in the image without
changing any other colors, or changing
only part of a sound.

What was most exciting about
Media Computation was that our as-
signments were defined in terms of
computation, but the choice of what
media to use in the assignments was
up to the students. Students produced
beautiful and creative works of art—in
their CS1 class.

The result on retention was pretty
dramatic.2 The pass rate for students
in those majors went from below 50%
in the former class to 85% in the Me-
dia Computation class. The research
evidence in the computing education
community suggests it is not just me-
dia. Giving students a context in which
to apply and understand computing

We believe each
of these approaches
addresses a failing
of traditional
introductory
computing courses.

Results of a course combining pair programming, peer instruction, and media computation over four years. (a) one-year retention for majors
who pass introductory computing. (b) Passing rates for initially enrolled students. (c) one-year retention of initially enrolled students.

0%

20%

R
et

en
ti

on
 (

P
as

si
n

g
)

Males

(a) More passing
students are retained.

Females Overall

40%

60%

80%

100%

0%

20%%
 o

f
S

tu
d

en
ts

 W
h

o
P

as
s

Males

(b) More enrolled students
pass the course.

Females Overall

40%

60%

80%

100%

0%

20%

R
et

en
ti

on
 (

E
n

ro
ll

ed
)

Males

(c) Combined—more enrolled students
are ultimately retained.

Females Overall

40%

60%

80%

100%

2001–2008 2008–2012

71% 73% 71%
64%

90% 87% 89%
82%

60% 63%

51% 51%50%

82% 82% 82%79% 81%

36 communications of thE acm | AugusT 2013 | vOL. 56 | nO. 8

viewpoints

Skidmore College, these classes have
begun hosting campuswide art shows
to showcase student work,4 a far cry
from being asocial and irrelevant.

 ˲ Computer science classes are com-
petitive, with students focused on their
individual grade. Peer instruction
shows students that computer science
lectures are about collaborating to
learn and working together as a team—
starting preparation for effective work
in software development teams.

There is a natural response to these
kinds of efforts: that we just made
these courses “easier” or “dumbed
them down.” The data we present
about greater success rates into the
second year, after changing only a
single course, suggests students are
at least as well prepared after imple-
menting these reforms. As long as the
students are achieving desired course
outcomes, we should aim to make the
class easier. There is no great virtue
in a difficult course that flunks out
students. These results demonstrate
that research-based practices can
make a course “easier,” with higher
pass rates and higher long-term re-
tention, while still achieving desired
learning outcomes.

References
1. bennedsen, J. and caspersen, m.e. failure rates in

introductory programming. SIGCSE Bull. 39, 2 (2007),
32–36.

2. guzdial, m. and elliott tew, a. Imagineering
inauthentic legitimate peripheral participation:
an instructional design approach for motivating
computing education. In Proceedings of the Second
International Workshop on Computing Education
Research. (2006).

3. mcDowell, c., Werner, l., bullock, h.e., and fernald,
J. Pair programming improves student retention,
confidence, and program quality. Commun. ACM 49, 8
(aug. 2006), 90–95; DoI: 10.1145/1145287.1145293.

4. Porter, l. and Simon, b. fostering creativity in cS1 by
hosting a computer science art show. ACM Inroads
(mar. 2013).

5. Porter, l. and Simon, b. retaining nearly one-third
more majors with a trio of instructional best practices
in cS1. In Proceedings of the 44th Special Interest
Group on Computer Science Education Technical
Symposium (2013).

Leo Porter (lporter1@skidmore.edu) is an assistant
professor of computer science at Skidmore college,
Saratoga Springs, ny.

Mark Guzdial (guzdial@cc.gatech.edu) is a professor
in the college of computing at georgia Institute of
technology in atlanta, ga.

Charlie McDowell (charlie@soe.ucsc.edu) is a
professor of computer science and associate Dean
for undergraduate affairs in the basking School of
engineering at the university of california Santa cruz.

Beth Simon (bsimon@cs.ucsd.edu) is a lecturer in
computer science and engineering and the director of the
center for teaching Development at the university of
california, San Diego.

copyright held by author.

ies. Although Peer Instruction is new
to computing, computer science edu-
cation research has shown that stu-
dents value Peer Instruction in upper
and lower division classes, instructors
value Peer Instruction, students learn
from peer discussion, students in Peer
Instruction classes experience a 61%
reduction in failure rates, and students
in Peer Instruction classes outperform
standard lecture by 5% on identical fi-
nal exams. (All references can be found
at http://www.peerinstruction4cs.org/
latest-research/.)

combining all three at ucsD
At this year’s SIGCSE Symposium, Por-
ter and Simon5 reported on how all
three of these approaches were com-
bined in an introductory programming
course at University of California at San
Diego (UCSD). They started tracking
students in 2001, and in 2008, created
a new quarter-long course that com-
bined pair programming, peer instruc-
tion, and media computation. After
running the new course for four years,
the results were remarkable. Not only
were more students who passed the class
retained into the Sophomore year (sec-
tion a in the figure), but because more
students also passed among those who
initially enrolled (section b in the fig-
ure) the combined effect had a dramatic
impact on retention of students enroll-
ing in CS1 (section c in the figure).

Why Did more students succeed?
What is going on in these three reform
efforts that cause this large change in
retention? We believe each of these
approaches addresses a failing of
traditional introductory computing
courses. We hear an often-repeated
set of complaints about computer
science education:

 ˲ Computer science is asocial. Stu-
dents see it being about sitting in the
corner and hacking for hours on end, and
that’s just not attractive. Pair program-
ming shows students that being in
computer science is about an intense
social experience, and that learning
and performance in computer science
is made better by working with others.

 ˲ Computer science is tedious, boring,
and irrelevant. Media Computation
shows students that computer sci-
ence is a creative endeavor, where the
output can be beautiful. At UCSD and

