Solution: The Drunkard’s Walk
Contents
Solution: The Drunkard’s Walk#
Functions definition#
Step simulator#
Write a function that works as a single step simulator.
Function returns a
string
value betweenforward
,left
andright
.Step is not “fair”:
50%
forward
25%
left
25%
right
You can use any
random function
from therandom
module.
from random import choices
def step_simulator():
step = choices(['forward','left','right'], weights=[50, 25, 25])
return step[0]
Walk simulator#
Write another function (walk simulator) that calls the single step simulator several times to simulate an entire Sailor’s trajectory, which can end with the sailor falling into the
water
or reaching theship
Function returns a
string
value betweenwater
andship
.You should call the
step_simulator()
function.
Variables:
Bridge Length (x direction) = 70 m
Bridge Width (y direction) = 14 m
Sailor’s Step length: 70 cm
Sailor’s starting x position: 0
Sailor’s starting y position: Width/2
open
y
boundaries (the sailor may fall off the bridge)
Option 1: Readable solution#
In this solution we use an if/elif/else
statement block to associate the step direction (forward
, left
, right
) with a change in position.
def walk_simulator():
step_length = 0.7 # m
bridge_x = 70 # m
bridge_y = 14 # m
x = 0
y = bridge_y / 2
while True:
step = step_simulator()
if step == 'forward':
x += step_length
elif step == 'left':
y += step_length
else:
y -= step_length
if (y<0) or (y > bridge_y):
return 'water'
elif (x >= bridge_x):
return 'ship'
Option 2: Using a Dictionary#
In this solution we use a Dictionary
to associate the step direction (forward
, left
, right
) with a change in position.
def walk_simulator():
step_length = 0.7 # m
bridge_x = 70 # m
bridge_y = 14 # m
x = 0
y = bridge_y/2
add_step = {
'forward': [step_length,0],
'left': [0,step_length],
'right': [0,-step_length]
}
while True:
step = step_simulator()
x += add_step[step][0]
y += add_step[step][1]
if (y<0) or (y > bridge_y):
return 'water'
elif (x >= bridge_x):
return 'ship'
Probability calculator#
Finally, write a probability function that calls the walk simulator several times to determine the approximate probability that the sailor will arrive on the ship.
Function returns a
float
value between0
and1
.Avoid using any knowledge of combinatorics to solve this problem. Instead, take advantage of the fact that the machine can simulate millions of steps/walks in a very short time.
Since this is based on random draws, the probability will be slightly different each time the code is run.
Option 1: Readable solution#
def get_probability():
N = 10_000
p = 0
for _ in range(N):
walk = walk_simulator()
if walk == 'ship':
p += 1
return(p/N)
Option 2: Using List Comprehension, if and sum()#
def get_probability():
N = 10_000
walk = [1 for _ in range(N) if walk_simulator()=='ship'] # list of ones
p = sum(walk)
return(p/N)
Option 3: Using List Comprehension and count()#
def get_probability():
N = 10_000
walk = [walk_simulator() for _ in range(N)] # list of "ship" and "water"
p = walk.count('ship')
return(p/N)
Testing#
Check if your function returns the expected value using the cell below.
import unittest
class UnitTests(unittest.TestCase):
def setUp(self):
self.N = 1000
self.step = step_simulator()
self.steps = [step_simulator() for _ in range(self.N)]
self.walk = walk_simulator()
self.walks = [walk_simulator() for _ in range(100)]
def test_step_type(self):
self.assertTrue(isinstance(self.step, str), 'The function should return a string')
def test_step_value(self):
self.assertTrue(sorted(set(self.steps)) == ['forward','left','right'], 'The function should return `forward`,`left` or `right`.')
def test_step_forward(self):
counts = self.steps.count('forward')/self.N
self.assertAlmostEqual(counts, 0.5, places=1, msg=f'The drunk should have 0.50 chance to step forward.')
def test_step_left(self):
counts = self.steps.count('left')/self.N
self.assertAlmostEqual(counts, 0.25, places=1, msg=f'The drunk should have 0.25 chance to step left.')
def test_step_right(self):
counts = self.steps.count('right')/self.N
self.assertAlmostEqual(counts, 0.25, places=1, msg=f'The drunk should have 0.25 chance to step right.')
def test_walk_type(self):
self.assertTrue(isinstance(self.walk, str), 'The function should return a string')
def test_walk_value(self):
self.assertTrue(sorted(set(self.walks)) == ['ship', 'water'], 'The function should return `ship` or `water`.')
def test_probability_ship(self):
self.assertAlmostEqual(get_probability(), 0.4, places=1, msg='The function should return around 0.4 of success.')
unittest.main(argv=[''], verbosity=2,exit=False)
test_probability_ship (__main__.UnitTests) ...
ok
test_step_forward (__main__.UnitTests) ...
ok
test_step_left (__main__.UnitTests) ...
ok
test_step_right (__main__.UnitTests) ...
ok
test_step_type (__main__.UnitTests) ...
ok
test_step_value (__main__.UnitTests) ...
ok
test_walk_type (__main__.UnitTests) ...
ok
test_walk_value (__main__.UnitTests) ...
ok
----------------------------------------------------------------------
Ran 8 tests in 3.932s
OK
<unittest.main.TestProgram at 0x7f42b0a61390>